Cambridge International Examinations
 Cambridge International General Certificate of Secondary Education

CHEMISTRY

0620/11
Paper 1 Multiple Choice (Core)
October/November 2016

Additional Materials:

Multiple Choice Answer Sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.
There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.
Read the instructions on the Answer Sheet very carefully.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 20.
Electronic calculators may be used.

1 'Particles moving very slowly from an area of higher concentration to an area of lower concentration.'

Which process is being described?
A a liquid being frozen
B a solid melting
C a substance diffusing through a liquid
D a substance diffusing through the air

2 A student mixes $25 \mathrm{~cm}^{3}$ samples of dilute hydrochloric acid with different volumes of aqueous sodium hydroxide.

In each case, the student measures the change in temperature to test if the reaction is exothermic.

Which piece of apparatus is not needed?
A

burette
B

clock
C

pipette

D

thermometer

3 Information about the solubility of four solids, P, Q, R and S, is given in the table.

	P	Q	R	S
solubility in water	dissolves	insoluble	insoluble	dissolves

A student attempted to separate mixtures of these solids using the following method.
1 Add the mixture to a beaker of water and stir.
2 Filter the mixture.
3 Crystallise one of the solids from the filtrate.
Which of the following mixtures could not be separated by this method?
A a mixture of P and R
B a mixture of Q and P
C a mixture of Q and R
D a mixture of R and S

4 The table shows information about atoms of three different elements.

element	proton number	nucleon number	number of protons	number of neutrons	number of electrons
chlorine	17	35	17	W	17
chlorine	17	X	17	19	17
argon	Y	40	18	22	18
potassium	19	39	19	20	Z

What are the values of $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z ?

	W	X	Y	Z
A	18	35	18	19
B	18	36	18	19
C	19	35	19	18
D	19	36	19	18

5 The diagrams show the structures of two forms of the same element.

T

U

What are the reasons for using T in cutting tools and U as a lubricant?

	T	U
A	It is very hard because each atom is held in place by strong covalent bonds.	The layers can slide over each other because the covalent bonds are weak.
B	It is very hard because each atom is held in place by strong covalent bonds.	The layers can slide over each other due to weak forces between the layers.
C	It is very hard because there are no electrons able to move.	The layers can slide over each other because the covalent bonds are weak.
D	It is very hard because there are no electrons able to move.	The layers can slide over each other due to weak forces between the layers.

6 lons are formed by elements losing or gaining electrons.
Which statement is correct?
A Metal atoms gain electrons to form positive ions.
B Non-metal atoms lose electrons to form positive ions.
C The charge on an ion is always either +1 or -1 .
D Group I ions have the same electronic structure as noble gases.

7 A molecule of X contains two carbon atoms, four hydrogen atoms and two oxygen atoms.
What is the formula of X ?
A $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
B $\mathrm{CH}_{3} \mathrm{COH}$
C $\mathrm{CH}_{3} \mathrm{COOH}$
D $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{COOH}$

8 Concentrated aqueous potassium chloride is electrolysed using platinum electrodes.
The solution contains the ions $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{H}^{+}$and OH^{-}.
Which electrodes are the ions attracted to during this electrolysis?

	anode	cathode
A	Cl^{-}and K^{+}	H^{+}and OH^{-}
B	Cl^{-}and OH^{-}	H^{+}and K^{+}
C	H^{+}and K^{+}	Cl^{-}and OH^{-}
D	H^{+}and OH^{-}	Cl^{-}and K^{+}

9 Which apparatus could be used to electroplate an iron nail with copper?

C
D

10 When anhydrous copper(II) sulfate is added to water a solution is formed and heat is given out.

Which row shows the temperature change and the type of reaction taking place?

	temperature change	type of reaction
A	decrease	endothermic
B	decrease	exothermic
C	increase	endothermic
D	increase	exothermic

11 The combustion of element X releases large amounts of energy.
What is X ?
A ethanol
B hydrogen
C methane
D uranium

12 The rate of reaction between magnesium and excess dilute hydrochloric acid was followed by measuring the mass of magnesium present at regular time intervals.

Two experiments were performed.
Both experiments used 0.1 g of magnesium ribbon. The acid in experiment 1 was less concentrated than in experiment 2.

Which graph shows the results of the experiments?
A

D

13 Which reaction is reversible?
A $\mathrm{CuCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$
C $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
D $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

14 Tin is formed when tin(II) oxide is heated with carbon.
What happens to the tin in the tin(II) oxide in this reaction?
A It is burnt.
B It is electrolysed.
C It is oxidised.
D It is reduced.

15 Part of the Periodic Table is shown.
Which element forms an acidic oxide?

16 Four substances, P, Q, R and S, are tested as shown.

test	substance			
	P	Q	R	S
dilute hydrochloric acid added	gas given off which 'pops' with a lighted splint	gas given off which turns limewater milky	no reaction	no reaction
dilute aqueous sodium hydroxide added and warmed gently	no reaction	no reaction	gas given off which turns damp, red litmus paper blue	no reaction

What are P, Q, R and S ?

	P	Q	R	S
A	Mg	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{NH}_{4} \mathrm{Cl}$	NaCl
B	Mg	$\mathrm{NH}_{4} \mathrm{Cl}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	NaCl
C	Mg	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	NaCl	$\mathrm{NH}_{4} \mathrm{Cl}$
D	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Mg	NaCl	$\mathrm{NH}_{4} \mathrm{Cl}$

17 Acids can react with metal oxides, carbonates and metals.
Which reactions produce a gas?
$\left.\begin{array}{|l|c|c|c|}\hline & \begin{array}{c}\text { acid with } \\ \text { metal oxide }\end{array} & \begin{array}{c}\text { acid with } \\ \text { carbonate }\end{array} & \begin{array}{c}\text { acid with } \\ \text { metal }\end{array} \\ \hline \text { A } & \checkmark & \checkmark & \checkmark \\ \text { B } & \checkmark & x & x\end{array}\right)$ key $\quad \checkmark=$ gas is produced

18 The apparatus shown is used to prepare aqueous copper(II) sulfate.

What are X and Y ?

	X	Y
A	copper	aqueous iron(II) sulfate
B	copper(II) chloride	sulfuric acid
C	copper(II) oxide	sulfuric acid
D	sulfur	aqueous copper(II) chloride

19 Which statement about trends in the Periodic Table is not correct?
A Elements in the same period have the same number of electron shells.
B The elements change from metals to non-metals from left to right.
C The number of protons in an atom of an element increases from left to right.
D The oxides of the elements change from acidic to basic from left to right.

20 What is not a property of Group I metals?
A They are soft and can be cut with a knife.
B They react when exposed to oxygen in the air.
C They produce an acidic solution when they react with water.
D They react rapidly with water producing hydrogen gas.

21 Which statement about the element with proton number 54 is correct?
A It burns in the air to form an oxide.
B It could be used in balloons because it has a very low density.
C It is a gas at room temperature.
D It is reactive because it has a full outer shell of electrons.

22 Which element is a transition element?

	colour of chloride	melting point of element $/{ }^{\circ} \mathrm{C}$
A	orange	113
B	orange	1535
C	white	113
D	white	1535

23 Which row describes the trends in the properties of the Group VII elements as the group is descended?

	colour	density	reactivity with halide ions
A	darkens	decreases	increases
B	darkens	increases	decreases
C	lightens	decreases	increases
D	lightens	increases	decreases

24 Four metals are listed in decreasing order of reactivity.
magnesium
zinc
iron
copper
Titanium reacts with acid and cannot be extracted from its ore by heating with carbon.
Where should titanium be placed in the list?
A below copper
B between iron and copper
C between magnesium and zinc
D between zinc and iron

25 Impure iron from the blast furnace is converted to steel as shown.

Which statement about the process is correct?
A Acidic oxides are added to remove alkaline impurities.
B Coke is added as a reducing agent.
C Oxygen is blown in to oxidise the impure iron.
D The steel produced contains less carbon than the impure iron.

26 A student added dilute hydrochloric acid to four metals and recorded the results.
Some of the results are not correct.

	results	
	metal	gas given off
1	copper	yes
2	iron	yes
3	magnesium	no
4	zinc	yes

Which two results are correct?
A 1 and 3
B 1 and 4
C 2 and 3
D 2 and 4

27 Some properties of three metals, P, Q and R, are shown.

metal	density	resistance to corrosion	electrical conductivity
P	low	high	very good
Q	high	high	very good
R	low	low	good

Which metals would be suitable for use in electrical wiring and aircraft manufacture?

	electrical wiring	aircraft manufacture
A	P	Q
B	Q	P
C	Q	R
D	R	P

28 One sample of sea-water is distilled while another sample of sea-water is filtered.
Which statement about the samples is correct?
A The distilled sample boils at exactly $100^{\circ} \mathrm{C}$ and contains dissolved salts.
B The distilled sample boils at $103^{\circ} \mathrm{C}$ and does not contain dissolved salts.
C The filtered sample boils at $103^{\circ} \mathrm{C}$ and contains dissolved salts.
D The filtered sample boils at exactly $100^{\circ} \mathrm{C}$ and does not contain dissolved salts.

29 Air is a mixture of gases.
Which gas is present in the largest amount?
A argon
B carbon dioxide
C nitrogen
D oxygen

30 Which information about carbon dioxide and methane is correct?

		carbon dioxide	methane
A	formed when vegetation decomposes	\checkmark	x
B	greenhouse gas	\checkmark	\checkmark
C	present in unpolluted air	x	x
D	produced during respiration	x	\checkmark

key
$\checkmark=$ true
$x=$ false

31 A mixture of two substances, X and Y , is heated.
The damp, red litmus paper turns blue.

What are X and Y ?

	X	Y
A	aluminium nitrate	hydrochloric acid
B	aluminium nitrate	sodium hydroxide solution
C	ammonium chloride	hydrochloric acid
D	ammonium chloride	sodium hydroxide solution

32 In the experiment shown, a white precipitate forms in the limewater.

What are X and Y ?

	X	Y
A	aqueous sodium hydroxide	zinc
B	aqueous sodium hydroxide	zinc carbonate
C	dilute sulfuric acid	zinc
D	dilute sulfuric acid	zinc carbonate

33 Which box corresponds to limestone?

34 Petroleum is an important fossil fuel.
Which row correctly describes petroleum?

	type of substance	composition
A	compound	mainly hydrocarbons
B	compound	only hydrogen and carbon
C	mixture	mainly hydrocarbons
D	mixture	only hydrogen and carbon

35 Butane reacts as shown.

$$
\text { butane } \xrightarrow[\text { and heat }]{\text { catalyst }} \text { butene }+ \text { hydrogen }
$$

What is this type of reaction?
A combustion
B cracking
C polymerisation
D reduction

36 Which substance is in the same homologous series as methanol?

A

37 Which statement could not be correct for an alkane?
A It burns readily in a plentiful supply of air to form only carbon dioxide and water.
B It decolourises aqueous bromine.
C It has a boiling point of $-42^{\circ} \mathrm{C}$.
D The carbon and hydrogen atoms in the molecule are joined by sharing pairs of electrons.

38 In which conical flask will ethanol be produced?
A

water and sugar
B

sugar and yeast
C

water, sugar
and yeast
D

water and yeast

39 Which molecule can be polymerised?
A
B

C
D

40 Which row describes what happens when ethanol burns in air?

	a white powder is left	heat energy is given out	carbon dioxide is formed	water is formed
A	\checkmark	x	\checkmark	\checkmark
B	x	\checkmark	\checkmark	\checkmark
C	x	\checkmark	\checkmark	x
D	x	\checkmark	x	\checkmark

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
The Periodic Table of Elements

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\underset{\substack{\text { lanthanum } \\ \text { las }}}{\mathrm{La}}$	$\underset{\substack{\text { cerium } \\ 140}}{\text { Ce }}$	$\underset{\substack{\text { praseodymium } \\ 141}}{\mathrm{Pr}}$	$\underset{\substack{\text { neodymium } \\ \text { nd }}}{\mathrm{Nd}}$	Pm promethium	$\underset{\substack{\text { samarium } \\ \text { Sm }}}{\text { Sm }}$	$\underset{\substack{\text { eurupium } \\ 152}}{\mathrm{Eu}}$	Gd gadolinium 157	$\underset{\substack{\text { terbium } \\ \text { tiv9 }}}{\mathrm{Tb}}$	$\underset{\substack{\text { dysprosium } \\ 163}}{\text { Dy }}$	$\underset{\substack{\text { Holmum } \\ \text { holmium } \\ 165}}{ }$	$\underset{\substack{\text { Errium } \\ \text { er } \\ 167}}{ }$	$\underset{\substack{\text { Thulium } \\ \text { the }}}{\text { Ton }}$	$\underset{\substack{\text { ytterbium } \\ \text { Yb }}}{\mathrm{Yb}}$	$\underset{\substack{\text { Luteium } \\ \text { Lut } \\ 175}}{ }$
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac actinium	$\begin{gathered} \text { Th } \\ \text { thorium } \\ 232 \end{gathered}$	$\underset{\substack{\text { protactinium } \\ 231}}{\text { Pa }}$	$\underset{\substack{\text { urarium } \\ \text { U38 }}}{\text { nen }}$	Np neptunium	Pu plutonium	Am americium	Cm curium	Bk berkelium	Cf californium	Es einsteinium	Fm fermium	Md	No nobelium	Lr lawrencium

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.)

